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Goals

● Overview Reinforcement Learning
● Q-Learning
● Deep Q-Learning
● Playing Games
● Improvements
● Do it Yourself



  

Reinforcement Learning

Continuous Control Atari Games

 https://gym.openai.com/evaluations/eval_i3x1JpReRukTZrznxypCw,  https://github.com/tambetm/simple_dqn 

https://gym.openai.com/evaluations/eval_i3x1JpReRukTZrznxypCw
https://github.com/tambetm/simple_dqn


  

ML basics
Components of an iterative learning system:

● Inputs - 'Data'
● Outputs - 'Correct Answers'
● Learning Algorithm – 'The Brain'
● Objective Function - 'How close to right'
● Optimizer - 'How to get closer to right'
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Reinforcement Learning

State
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Actions Objective Function
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Reinforcement Learning

● The real world: unsupervised

Goal: 
● Learn a policy that maximizes cumulative future reward

Difficulties:
● Sparse, time delayed reward
● Credit assignment
● Exploration vs exploitation
● Action space size
● Observation space size



  

Reinforcement Learning 
Approaches

● Policy Iteration / Gradient
– Temporal Difference

● TD-Gammon
● Q-Learning 

● Stochastic Derivative Free
– Cross Entropy Method



  

Markov Decision Process

● Agent
● Environment
● State
● Actions
● Reward
● Policy 
● Discount

– Discounted Future Reward

● Learning Rate

● Markov Assumption: P(Si+1) is determined solely by Si and ai

● Partially observable
● Partially Random
● Discrete Time



  

Q-Learning
● Basic Q-Learning Algorithm

  http://mnemstudio.org/path-finding-q-learning-tutorial.htm  

Initialize Q(s,a) arbitrarily
Repeat until terminal

Choose a using policy given Q (eg epsilon-greedy)
Take action a, observe r, s'
Update Q(s,a) towards r + maxa'Q(s',a')

Goal: get outside State, Action, Reward



  

Q-Learning

● Will converge to optimal solution
● Off Policy, what if exploration is costly?
● What if search space is too large



  

Deep Q-Learning

● Replace Q-table with deep network
● Q(s,a) estimated by network



  

Deep Q-Learning

Improvements:
● Experience Replay

– <s,a,r,s'>

– Minibatch from memory

– Prevents training on too similar data

● Epsilon Greedy Exploration
– Explore randomly occasionally

– Decay over time

● Other methods:
– Clip Error

– Clip Reward

– Target Network



  

Q-Learn Loop

while not game_over:

    if np.random.random() < epsilon:

        a = int(np.random.randint(game.nb_actions))

    else:

        q = model.predict(S)

        a = int(np.argmax(q[0]))

    game.play(a)

    r = game.get_score()

    S_prime = self.get_game_data(game)

    game_over = game.is_over()

    transition = [S, a, r, S_prime, game_over]

    self.memory.remember(*transition)

    S = S_prime

    batch = self.memory.get_batch(model=model, batch_size=batch_size, gamma=gamma)

    if batch:

        inputs, targets = batch

        loss += float(model.train_on_batch(inputs, targets))

  https://github.com/farizrahman4u/qlearning4k  



  

Model Code

model = Sequential()
model.add(BatchNormalization(axis=1, input_shape=(nb_frames, grid_size, grid_size)))
model.add(Convolution2D(16, nb_row=3, nb_col=3, activation='relu'))
model.add(Convolution2D(32, nb_row=3, nb_col=3, activation='relu'))
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dense(256, activation='relu'))
model.add(Dense(256, activation='relu'))
model.add(Dense(nb_actions))
model.compile(RMSprop(), 'MSE')

snake = Snake(grid_size)

agent = Agent(model=model, memory_size=1000, nb_frames=nb_frames)
agent.train(snake, batch_size=200, nb_epoch=5000, gamma=0.8, epsilon=[1,.01])



  

Playing Catch



  

Training: Hyperparameters



  

Training: Hyperparameters
2x3 HL: Mean Loss over last 100: .256  

6x1 HL: Mean Loss over last 100: .112  



  

Training: Hyperparameters



  

Playing Snake



  

Snake



  

Snake



  

Snake



  

Snake
Memory: 100



  

Atari: Looking at the Layers

Left is the activation. Right is the Screen.

 http://www.nervanasys.com/deep-reinforcement-learning-with-neon/ 

    

http://www.nervanasys.com/deep-reinforcement-learning-with-neon/


  

Open-AI Gym

● Standardized comparisons
● Many Tasks (usually games)
● Reproduction and Review
● Blackbox Challenge



  

More Games

More Atari: Space Invaders Classic Control: Cartpole

https://github.com/tambetm/simple_dqn  https://gym.openai.com/envs/CartPole-v0  

Emulate Turing Machine Functions

Go

Continuous Control in Physics Environments

https://github.com/tambetm/simple_dqn
https://gym.openai.com/envs/CartPole-v0


  

Advancements

● Double Q-Learn
● Trust Policy Region Optimization
● Actor Critic for continuous action regimes



  

Run your own

git clone https://github.com/reidsanders/dl-talk.git

A quick overview of how I run my models:

Small models on my laptop with an nvidia discrete chip
For larger: Amazon gpu instance 
Aquired via spot bid (aws cli, set your security group outbound rule to your ip, and 
recheck regularly if you can't connect it's probably your dynamic ip changing)
Running ubuntu 14.04 (possibly use a ml ami, but many of these are out of date) 
Use Cuda or opencl (probably cuda)
Install your libraries (use virtualenv for python please)
Deploy with fabric
When using ssh, use tmux
Train, keeping an eye on validation and training loss
Download results and checkpoints with fabric, save a snapshot in ec2 console or 
cli

Try: Fomoro (Free trial cloud gpu)



  

Resources

Demystifying Deep Reinforcement Learning

Open AI-Gym

Projects:

Deep Q-Learning in Keras

Q-Learning Tutorial

Modular RL - TRPO

DQN Atari in Tensorflow

http://www.nervanasys.com/demystifying-deep-reinforcement-learning/
https://gym.openai.com/
https://github.com/farizrahman4u/qlearning4k
http://mnemstudio.org/path-finding-q-learning-tutorial.htm
https://github.com/joschu/modular_rl
https://github.com/gtoubassi/dqn-atari
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