

Deep Q-Learning

Goals

● Overview Reinforcement Learning
● Q-Learning
● Deep Q-Learning
● Playing Games
● Improvements
● Do it Yourself

Reinforcement Learning

Continuous Control Atari Games

 https://gym.openai.com/evaluations/eval_i3x1JpReRukTZrznxypCw, https://github.com/tambetm/simple_dqn

https://gym.openai.com/evaluations/eval_i3x1JpReRukTZrznxypCw
https://github.com/tambetm/simple_dqn

ML basics
Components of an iterative learning system:

● Inputs - 'Data'
● Outputs - 'Correct Answers'
● Learning Algorithm – 'The Brain'
● Objective Function - 'How close to right'
● Optimizer - 'How to get closer to right'

Input

Correct
Output

Hypothesis Objective Function
Learning
Algorithm

Optimizer

Reinforcement Learning

State

Reward

Actions Objective Function
Learning
Algorithm

Optimizer

Reinforcement Learning

● The real world: unsupervised

Goal:
● Learn a policy that maximizes cumulative future reward

Difficulties:
● Sparse, time delayed reward
● Credit assignment
● Exploration vs exploitation
● Action space size
● Observation space size

Reinforcement Learning
Approaches

● Policy Iteration / Gradient
– Temporal Difference

● TD-Gammon
● Q-Learning

● Stochastic Derivative Free
– Cross Entropy Method

Markov Decision Process

● Agent
● Environment
● State
● Actions
● Reward
● Policy
● Discount

– Discounted Future Reward

● Learning Rate

● Markov Assumption: P(Si+1) is determined solely by Si and ai

● Partially observable
● Partially Random
● Discrete Time

Q-Learning
● Basic Q-Learning Algorithm

 http://mnemstudio.org/path-finding-q-learning-tutorial.htm

Initialize Q(s,a) arbitrarily
Repeat until terminal

Choose a using policy given Q (eg epsilon-greedy)
Take action a, observe r, s'
Update Q(s,a) towards r + maxa'Q(s',a')

Goal: get outside State, Action, Reward

Q-Learning

● Will converge to optimal solution
● Off Policy, what if exploration is costly?
● What if search space is too large

Deep Q-Learning

● Replace Q-table with deep network
● Q(s,a) estimated by network

Deep Q-Learning

Improvements:
● Experience Replay

– <s,a,r,s'>

– Minibatch from memory

– Prevents training on too similar data

● Epsilon Greedy Exploration
– Explore randomly occasionally

– Decay over time

● Other methods:
– Clip Error

– Clip Reward

– Target Network

Q-Learn Loop

while not game_over:

 if np.random.random() < epsilon:

 a = int(np.random.randint(game.nb_actions))

 else:

 q = model.predict(S)

 a = int(np.argmax(q[0]))

 game.play(a)

 r = game.get_score()

 S_prime = self.get_game_data(game)

 game_over = game.is_over()

 transition = [S, a, r, S_prime, game_over]

 self.memory.remember(*transition)

 S = S_prime

 batch = self.memory.get_batch(model=model, batch_size=batch_size, gamma=gamma)

 if batch:

 inputs, targets = batch

 loss += float(model.train_on_batch(inputs, targets))

 https://github.com/farizrahman4u/qlearning4k

Model Code

model = Sequential()
model.add(BatchNormalization(axis=1, input_shape=(nb_frames, grid_size, grid_size)))
model.add(Convolution2D(16, nb_row=3, nb_col=3, activation='relu'))
model.add(Convolution2D(32, nb_row=3, nb_col=3, activation='relu'))
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dense(256, activation='relu'))
model.add(Dense(256, activation='relu'))
model.add(Dense(nb_actions))
model.compile(RMSprop(), 'MSE')

snake = Snake(grid_size)

agent = Agent(model=model, memory_size=1000, nb_frames=nb_frames)
agent.train(snake, batch_size=200, nb_epoch=5000, gamma=0.8, epsilon=[1,.01])

Playing Catch

Training: Hyperparameters

Training: Hyperparameters
2x3 HL: Mean Loss over last 100: .256

6x1 HL: Mean Loss over last 100: .112

Training: Hyperparameters

Playing Snake

Snake

Snake

Snake

Snake
Memory: 100

Atari: Looking at the Layers

Left is the activation. Right is the Screen.

 http://www.nervanasys.com/deep-reinforcement-learning-with-neon/

http://www.nervanasys.com/deep-reinforcement-learning-with-neon/

Open-AI Gym

● Standardized comparisons
● Many Tasks (usually games)
● Reproduction and Review
● Blackbox Challenge

More Games

More Atari: Space Invaders Classic Control: Cartpole

https://github.com/tambetm/simple_dqn https://gym.openai.com/envs/CartPole-v0

Emulate Turing Machine Functions

Go

Continuous Control in Physics Environments

https://github.com/tambetm/simple_dqn
https://gym.openai.com/envs/CartPole-v0

Advancements

● Double Q-Learn
● Trust Policy Region Optimization
● Actor Critic for continuous action regimes

Run your own

git clone https://github.com/reidsanders/dl-talk.git

A quick overview of how I run my models:

Small models on my laptop with an nvidia discrete chip
For larger: Amazon gpu instance
Aquired via spot bid (aws cli, set your security group outbound rule to your ip, and
recheck regularly if you can't connect it's probably your dynamic ip changing)
Running ubuntu 14.04 (possibly use a ml ami, but many of these are out of date)
Use Cuda or opencl (probably cuda)
Install your libraries (use virtualenv for python please)
Deploy with fabric
When using ssh, use tmux
Train, keeping an eye on validation and training loss
Download results and checkpoints with fabric, save a snapshot in ec2 console or
cli

Try: Fomoro (Free trial cloud gpu)

Resources

Demystifying Deep Reinforcement Learning

Open AI-Gym

Projects:

Deep Q-Learning in Keras

Q-Learning Tutorial

Modular RL - TRPO

DQN Atari in Tensorflow

http://www.nervanasys.com/demystifying-deep-reinforcement-learning/
https://gym.openai.com/
https://github.com/farizrahman4u/qlearning4k
http://mnemstudio.org/path-finding-q-learning-tutorial.htm
https://github.com/joschu/modular_rl
https://github.com/gtoubassi/dqn-atari

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

